
Design of a High-Throughput Match Search Unit
for Lossless Compression Algorithms

Anonymous 1
ACME inc.

Omitted due to blind review

Anonymous 2
ACME inc.

Omitted due to blind review

Anonymous 3
ACME inc.

Omitted due to blind review

Anonymous 4
ACME inc.

Omitted due to blind review

Abstract—This paper presents an attempt to combine re-
cent research in fields of hardware- and software-based high-
throughput universal lossless compression algorithms and their
implementations, resulting into a case study focusing on one of
the most critical parts of compression algorithms – a Match
Search Unit (MSU). The presented FPGA design combines ideas
of the LZ4 algorithm (which is derived from the most common
LZ77) with the state of the art hardware architectures for lossless
compression also based on LZ77. This approach might lead to a
smaller, better organized or more efficient ”building block” for
modern implementations of hardware driven lossless compression
algorithms. The presented design focuses on optimization of the
main problem of the LZ77 family, namely the construction of and
searching in a compression dictionary. Particularly, we combine
a Live Value Table (LVT) with multi-ported memory in order
to improve the bandwidth of the dictionary and the Fibonacci
hashing principle originating from LZ4 algorithm to decrease
latency of the MSU and to achieve overall higher throughput
rate. For the design synthesis an FPGA of the Xilinx Virtex-7
family was used.

Index Terms—FPGA; high; bandwidth; fast; lossless; com-
pression; algorithm; architecture; LZ4; LZ77; hash; table; LVT;
multiport; memory; Xilinx; Virtex

I. INTRODUCTION

In recent decades throughput of lossless compression sys-
tems has increased by an order of magnitude [1] . Further
progress requires new and more complex architectures. Adapt-
ing certain techniques from software domain into hardware
domain can generally increase performance or decrease con-
sumption of FPGA logic resources opening the possibility of
accelerators with higher density and frequency on a single
chip. This approach is crucial in overcoming the challenge
of 100 Gbps throughput which is expected to be needed in
upcoming years. However, designing a block with approxi-
mately 10 Gbps throughput would be a good testing setup for
implementation of optimizations from software domain. We
would like to scale-up our solution towards 100 Gbps in the
near future.

The rest of the paper is structured as follows. In Section
II we summarize relevant previous works and we analyze
key features of lossless compression algorithms, their software
implementations and current FPGA architectures, which may
have influence on compression performance. In Section III we
propose an optimized FPGA design of a Match Search Unit.
Performance measurements of this design are presented in

Section IV. Finally, we propose further possible improvements
in Section V.

II. STATE OF THE ART & ANALYSIS

The era of an universal lossless compression has begun in
1977 with the introduction of the first Lempel-Ziv algorithm
known as the LZ77 [2]. Many following algorithms have
been based upon combination of LZ77 and Huffman Encoding
principle [3]. These methods resulted in DEFLATE algo-
rithm [4], which together with bare LZ77 represents the most
widespread implementations of lossless compression among
hardware architectures.

Few years ago, a concept of ”fast” compression algo-
rithms [5], trading the compression ratio for speed, has
appeared. Representative examples of ”fast” algorithms are
LZO [5] or LZ4 [6], which are using advantage of LZ77’s
single-pass (de-)compression, where the input data are pro-
cessed only once. Thanks to this feature, the hardware and
software implementations are highly efficient and compact,
and commonly benefit from hardware-tight optimizations, such
as pipelining, loop unrolling or cache optimization [5].

A. LZ77 FPGA implementations and the effect of an MSU

Several architectures of an LZ77-based compression scheme
in FPGA have been recently presented [8]–[11]. These imple-
mentations focused on real-time lossless compression of IP
(Internet Protocol) packets at 10 Gbps throughput (or 40 Gbps
in the most recent case [8]).

General architecture of LZ77-based implementation consists
of two parts. The first is a ”Match Search Unit” (MSU) which
is used to find indexes of repeated occurrences throughout
the processed data. The second is an encoding unit which
transforms the occurrences into given output format. This part
is usually a simple finite state machine which has very little
effect on compression ratio and speed of the design. The MSU
is the core element in every LZ77-based design. It is usually
the most complex part of a compression algorithm with highest
impact on its speed. It contains a data structure (compression
dictionary), which allows it to store and index a certain amount
of history of processed data. This allows the MSU to quickly
find a match between the already processed data and the data
being processed. This dictionary therefore affects the overall
speed of the MSU. The performance of the MSU can be
affected by the following properties of the dictionary:

DATA := IB[IBA]
(4 Bytes)

H
as

h
 T

ab
le

(M
em

o
ry

 P
o

in
te

r
O

ri
e

n
te

d
)

Read Data
from IB

Input Buffer
Address (IBA)

HTA := HASH(DATA)
(Hash Table Address)

IBA++
(One Byte Shift)

Match Found!
(Copy & Encode)

TrueFalse

Write New
IBA Pointer

Read Old
IBA Pointer

In
p

u
t

B
u

ff
er

(B
yt

e
O

ri
en

te
d

)

Candidate Match (CM) := HT[HTA]
HT[HTA] := IBA

P_DATA := IB(CM)
(Previous Data with same HT Address)

IF (P_DATA == DATA
& Within Offset Limit)

Read Data
from IB

Input Buffer
Address (CM)

Reading 4B Data
from Input Buffer

Calculating HASH from
Data to get HT Address

Read Match Candidate Data
Address and Write The New One

Reading 4B Old (Candidate) Data
from Input Buffer from Address [CM]

Match?Repeat Until The End

Fig. 1. Data flow of the original LZ4 MSU [6], [7].

1) The compression ratio is directly proportional to the
size of the dictionary. However, a larger dictionary uses
more FPGA resources and in most cases it reduces the
design speed and therefore the compression speed is
being reduced as well.

2) The number of independent ports enabling parallel
search for matches can increase the throughput.

3) The overall architecture of the dictionary – sub-
dictionaries [9] vs. fully shared [8] vs. other techniques.

Current trend in hardware implementations of dictionary
structures is to use a hash table [6]–[9], rather than a Content
Access Memory (CAM). However, both of them are more
suitable for hardware domain, instead of more sophisticated
data structures such as binary trees, which are commonly used
in software implementation with higher compression ratios.
Due to the fact that the duration of the data access is not
fixed, these structures are usually not suitable for hardware
implementations.

B. Hash Tables & Hash Algorithms Properties

In contrast to CAM, where each data input is stored in
aǧiven memory slot, hash table uses hashing principle [12]
to create hash (key) for certain input. This input is then
used as an address for assigning a memory slot to the input
data. The hashing principle is an essential technique for
efficient implementation of any data storage system realized
in hardware or software.

The key can be adjusted according to the size of the
memory, this allows us to use smaller memory in imple-
mentations. However, this causes a problem, when multiple
keys are adjusted to the same memory slot (collision). The
number of collisions belongs to performance indicators of the
hashing principle, most of the hashing principles with good
performance have key distribution almost uniform.

In software domain the collisions are solved by hashing the
data again (rehashing). This approach can be used in hardware
designs [7], however, in high throughput cases it is not a very
usable approach due to its inconsistent duration, which causes
that the design is unable to guarantee minimal performance.
Therefore in high throughput compression designs collisions

are ignored to guarantee the minimal throughput performance,
this results in negative effect on compression ratio but it
usually shows an acceptable degree.

In hardware design the size of memory is usually given
in a form of 2n. Some of the hashing principles are using
prime numbers to achieve best performance, one of them being
the Fibonacci hashing principle [12]. This principle is based
upon simple multiplication with constant which is the closest
possible prime number to the golden ratio.

C. LZ4 Algorithm

LZ4 was chosen as a candidate for our design following a
full analysis of LZ4 [6] from a hardware designer’s perspec-
tive. The advantageous chracteristics of LZ4 include the high-
est (de-)compression speed among other lossless algorithms,
resource efficiency and easy implementation in an FPGA. The
current highest throughput implementation of LZ4 algorithm
can reach up to 4 Gbps [13].

The data flow of the LZ77 compression family is divided
into three parts – the compression stream, output stream and
buffer for the decompressed data. The main principle of this
family is that the compression stream is divided into segments
called ”data blocks”. Each block consists of literals copied
directly to the output stream, and back reference used to copy
certain number of bytes from the already decompressed buffer
to the output stream. This technique is called de-duplication,
which represents an origin of the lossless compression in the
LZ77 family.

As described in [6], [7], a software variant of the LZ4
compression algorithm is divided into four parts:

1) input buffer,
2) Match Search Unit (MSU) with a hash table,
3) output sequence encoder when a match occurs,
4) output buffer.
The data flow of the LZ4 MSU [6], [7] is depicted in

Fig. 1. The picture also indicates a potential problem for
parallelization, namely the write operations being performed
over the same memory segment of the Hash Table. These
operations are spread over the whole memory space, therefore
they cannot be merged into a single transaction. We experience

a similar issue also with read operations which are random
as well. These two problems can be solved by the use of a
multiport memory for the Hash Table (with multiple readwrite
ports) and an input buffer (multiple read ports). The number
of read and write ports should be equal to the degree of the
planned parallelism.

D. Multiport Memory in FPGAs
A multiport memory is a component essential for imple-

mentation of a ”fully-shared” dictionary, where the content is
shared among all MSUs. The Live Value Table (LVT) [14] is
the most common approach for creating a multiport memory
from an ordinary single port (or dual port) memory, such as
Xilinx BRAM or Altera M9K blocks.

There is also an alternative approach using an XOR tech-
nique [22], [23] for accessing the latest value. The main advan-
tage of this method is reducing the number of logic elements
and increasing speed for low-depth memories. However, for
larger memories this method has lower frequency which is an
essential parameter for high throughput design.

Before the introduction of the LVT, multiport memory was
implemented usually from general re-configurable logic. Such
logic has in theory no limits in capacity and parallelism (the
number of ports), but it requires a lot of FPGA resources,
thus slowing the whole design down in terms of its operating
frequency and requiring a large area of an FPGA for imple-
mentation.

The idea of the LVT is to divide such a memory design
using general re-configurable logic into two parts:

1) Data memory using single or dual port embedded FPGA
memory blocks (BRAMs) where the number of read-
/write ports can be increased by replication, banking and
multipumping principles [14].

2) Control memory (created from general logic) keeps
the information for each written address concerning in
which part of the data memory the latest value is stored.
With each read operation, this information is used to set
output multiplexers to the location of the latest value
written for the given address.

III. OUR APPROACH

In this section we describe decisions we made within the
architecture design. The initial idea was to combine features
mentioned in the previous section into a new architecture of
the MSU. We started with the original LZ4 architecture which
is depicted in Fig. 1.

A. Implementation Platform & Minimum Throughput
We selected the Xilinx 7-Series logic, which has been used

for the latest three FPGA generations and appears to be a
good practical choice, however the described architecture can
be easily implemented in any modern FPGA. The recent
architectures [8], [9] achieved 10 Gbps throughput. A common
10G Ethernet IP core uses a 64-bit data path clocked at
156.25 MHz [15]. We aim our design to be used currently
for 10G applications with future development towards 40G
and 100G Ethernet applications.

B. Speed Optimization of the LZ4 Original MSU

We investigated a way to improve the performance of the
original LZ4 MSU hardware design Fig. 1. This design uses
a simple and non-parallel flow of the LZ4 MSU unit. There
are several issues in the design:

• For each 4-byte block of memory that is tested for a
match, we need to perform two reads from the input
buffer and both a read and write to the hash table.

• These accesses to the memories are distributed across the
whole memory space, therefore they cannot be merged
into a single transaction operation. This causes a problem
with the parallelization of the unit, because it requires a
multi-ported memory for the input buffer and the hash
table (see Fig. 1).

• There is a memory access for a 4-byte block in each
cycle, however the memory block of the next cycle has
only a single byte offset from the previous cycle (see
Fig. 2). This results in redundant operations leading to
read efficiency of 25%.

Reading from the Input Buffer (Byte Oriented)

32-bit Sequence

32-bit Sequence

32-bit Sequence

32-bit Sequence

32-bit Sequence8
-b

it
 D

iff
er

en
ce

Ea
ch

 C
yc

le

Input Buffer Address (IBA)

Each Cycle -> IBA++

Only one (new) byte is
processed per clock cycle
but four bytes are read!

1 20 3 4 5 6 7 8 9 A Byte Offset

Fig. 2. Original LZ4 memory read scheme.

There are two fundamental ways of increasing design
throughput - running the design at a higher operating fre-
quency or increasing the number of data bits processed per a
clock cycle. In our case, increasing the number of data bits is
more suitable because compression algorithm implementations
tend to be quite complex and a critical path in the logic limits
the operating frequency.

1) Increasing Design Datapath Width: We assume that
the data for processing are IP packets coming from a 10G
Ethernet interface, delivered via a 64-bit data stream clocked
at 156.25 MHz. The IP packet payload can be up to 9 kB
large (Jumbo packets), to utilize the maximum throughput of
the 10G Ethernet. We can use native width of the datapath
and size of the payload for our advantage to construct the
Input Buffer with capacity of 16 kB, 64-bit write port and
128-bit read port (the nearest power of two needed to read the
required volume of the input data – 88-bits, see Fig. 3) from
FPGA BRAM memory without any significant overhead.

We need to process 64-bits (8 bytes) per a clock cycle
to match the requirements of a 10G Ethernet datapath. The
original LZ4 MSU can process up to one byte per a clock
cycle, but four bytes had to be read from the Input Buffer (see
Fig. 1). We can make use of the fact that the data in the Input
Buffer are consecutive and the processed 4-byte data blocks
are overlapping with each other, thus we will use 88-bits (8

64-bit Difference

Reading from the Input Buffer (Byte Oriented)

128-bit Sequence

Each Cycle -> IBA = IBA + 8

32-bit Subsequence
32-bit Subsequence

32-bit Subsequence
32-bit Subsequence

32-bit Subsequence
32-bit Subsequence

32-bit Subsequence
32-bit Subsequence

24-bit Overrun

Total: 88-bit Read Data
Unused 40-bit Sequence

Eight Original LZ4
32-bit Sequences

Processing eight (new) bytes per clock.

*IBA+0

*IBA+1

*IBA+2

*IBA+3

*IBA+4

*IBA+5

*IBA+6

*IBA+7

0 1 2 3 4 5 6 7 8 9 A B C Byte Offset

Fig. 3. Hardware optimized LZ4 memory read schema

blocks of 4-byte sequences with 1-byte overlap, last 3-bytes
are for the last read) of the 128-bit read interface, which is the
nearest higher power of 2. The optimized memory scheme is
depicted in Fig. 3.

We need to generate eight pairs of Input Buffer Address
(IBA) pointers where each destination represents one of the 4-
byte blocks. Address pointers are also consecutive, therefore
they can be calculated by a simple adder logic. Thanks to
that only the ”master” IBA pointer is needed, which will be
increased by 8 (originally by 1) in every clock cycle until
a match is found. Finally, this approach does not increase
the number of access operations to the Input Buffer, but it
increases throughput eight times and the overall memory read
efficiency to the range of 50%–72% (considering a 128-bit
raw sequence or 88-bit read data, respectively) compared to
the original 25%.

2) Reducing Number of Read/Write Memory Accesses:
The major issue is the parallel access to the HT (Hash
Table) representing a dictionary in this particular case and
the following access operations to IB (readback of candidate
match positions). Data are stored in the HT at nearly random
positions (they are no longer consecutive as the data before
the hashing phase). We decided to implement a ”fully shared”
dictionary (unlike 842B [9] technique or any multibank-based
principle), where all MSUs have access to a single dictionary
(behaving as a single memory). Without this dictionary the
compression ratio would be significantly decreased because
matching would occur only between blocks processed by
the same IBA pointer. This decision requires to implement a
multiport memory using the LVT [14] technique. Therefore all
read/write operations in HT are accessing random addresses.

The original algorithm reads an old IBA after the hash
calculation and stores a new one in its place. The architecture
of the FPGA embedded block memory allows performance of
both operations as a single transaction in a single clock cycle.
The Hash Table Address (HTA) is obtained via a hash function
from data read from IB.

Our idea is to reduce the number of accesses via merging
the processed data and the IBA pointer into a single record
inside the Hash Table (see Fig. 4). This approach will remove

the need for the following read accesses from IB. The HT
becomes the only component requiring a multiport memory.
The resulting architecture will be simplified because only one
LVT based memory will be required.

DATA := IB[IBA]
(4 Bytes)

H
as

h
 T

ab
le

(I
B

A
 P

oi
nt

er
 +

 R
el

at
ed

 D
A

TA
)

Read Data
from IB

Input Buffer
Address (IBA)

HTA := HASH(DATA)
(Hash Table Address)

{CM + P_DATA} :=
HT[HTA]

(Candidate Match
Pointer & Data)

HT[HTA] :=
{IBA + DATA}

Write DATA
Related to the

New IBA Pointer

Read Old
IBA Pointer

IBA++
(One Byte Shift)

Match Found!
(Copy & Encode)

IF (P_DATA == DATA
& Within Offset)

True

False

Write New
IBA Pointer

Read DATA
Related to the
Old IBA Pointer

In
p

ut

B
u

ff
er

(B
yt

e
O

ri
en

te
d

)

Four Operations =
Single HT (Memory)

Access

Fig. 4. Flow of the (memory access) optimized LZ4 MSU3) Hash Calculation & Pipelining: The last important part
required for the MSU architecture is the hash calculation
block. The original LZ4 uses a Fibonacci hashing principle
where the input value is multiplicated by a constant (a prime

In
pu

t
B

u
ff

er
14

-B
it

 D
at

a
 A

d
dr

es
s

(8
X)

32
-B

it
 D

at
a

 (8
X)

Fibonacci Hashing
Block (DSP48)
(Latency = 6)

Fibonacci Hashing
Block (DSP48)
(Latency = 6)

Data Pipeline
(Latency = 6)

Data Address
Pipeline

(Latency = 6)

HT Address
(8-Bit)

HT Data In
(46-Bit)

HT Data Out
(46-Bit)

Previous Data
(32-Bit)

Current Data
(32-Bit)

Current Address
Match Candidate (14-Bit)

Match

Previous Address
Match Candidate

(14-Bit)

M
atch

 Fou
n

d
 Sign

al &
 M

atch
 A

d
dress P

air

Merge
Hash Table
256 Entries

8x Write Port
8x Read Port

Using LVT
(Latency = 1)

Data & Data
Address Pipeline

(Latency = 1)

Split

C
u

rre
n

t
A

d
d

re
ss

M
U

X
 1

:8

P
revio

u
s

A
d

d
re

ss
M

U
X

 1
:8

Fig. 5. Architecture of the new MSU inspired by the (hardware) optimized LZ4 flow

number) and higher bits are selected to create the Hash Table
Address (HTA) [6].

The Xilinx DSP48 block can be used for the hash cal-
culation. The optimal settings (recommended by the Xilinx
CoreGen tool) for multiplication of two 32-bit numbers are:
four DSP48 blocks and the calculation requires six clock
cycles (estimation made the CoreGen) thus the block will be
able to operate at approximately 700 MHz in case of a Virtex-
7 chip [16]. The pipelining principle is required to mask the
computation latency and to maximize the throughput. We can
also utilize maximum operating frequency by using higher
frequency for the DSP48 blocks than for the rest of the design,
thus reducing the length of the pipeline for hash calculation
to 3 or 2 cycles.

IV. RESULTS

In this section we discuss the contribution, designed archi-
tecture, measurement setup and results comparison.

A. Optimized Architecture

Throughput of at least 10 Gbps requires an 8-way parallel
architecture, which is the minimum configuration for the
original byte-oriented LZ4 flow. The architecture requires an
8-port hash table implementing the dictionary (for 256-1024
entries), thus the HT memory will use the LVT principle. The
IB (Input Buffer) has the capacity of 16 kB (for Jumbo packet
support) and has been optimized to process an aligned 128-bit
read operation instead of original 32-bits. The LVT principle
is not required for the Input Buffer. The architecture (depicted
in Fig. 5) is based on the optimized LZ4 flow, which is more
suitable for implementation in an FPGA then the original LZ4
flow 1. The architecture is capable of processing eight bytes
in a single clock cycle.

The FPGA design expects 8 pairs of IBA pointers and the
related data (32-bit long sequences), both provided by the IB.
These pairs are pipelined along a hash calculation block, where

8 HTAs are calculated. The length of the pipeline must be the
same as the latency of the hash calculation blocks which are
clocked at a higher frequency to decrease the latency. These
pairs will be read and written to the locations specified by
HTAs in the HT with the latency of one clock cycle. Each pair
is also pipelined along the HT representing the compression
algorithm dictionary.

The previous data (P DATA) are extracted from a candidate
match (CM) pair, which is read from the HT. If the previous
data are equal to the current data which is read from the
pipeline, a match occurs. Both previous and current IBAs will
become a match. The last step is to resolve possible multiple
matches in a single clock to a single match via multiplexers
controlled by a priority encoder (the lower the value of IBA,
the higher the priority).

B. Measurement Setup & Synthesis Results
The Xilinx ISE 14.7 toolkit was used to synthesize the

presented architecture for the Xilinx Virtex-7 XC7V330T-
2FFG1157 chip. For the synthesis the optimizations were
adjusted to Speed/High . The hash table size was set to the
value of 256 entries (minimal feasible value [21]). The FPGA
resource utilization for the routed design is summarized in
Table I. We used the random FPGA pin placement feature
available in the Xilinx ISE toolkit to get a fully routed design.
This feature allowed us to measure the design speed in a more
realistic way.

TABLE I
LZ4 MSU RESOURCES UTILIZATION FOR VIRTEX-7 XC7V330T

Slice LUT Flip Flop BRAM DSP48 Frequency
4828 15014 8530 64 32 250 MHz

C. Resource Use Comparison
We know that the Xilinx 7-Series logic SLICE block con-

tains four LUT6 (6-input Look Up Table) blocks plus eight

flip-flops [17]. We also know that the Altera Stratix V ALM
contains two LUT6 and 4 flip-flops [19], thus a single Xilinx
Slice can be considered equal to two Altera ALMs.

This simplification allows us to compare our architecture
to the previous work [8]. The PWS=8 w/ HT (Parallelization
Window Size) variant can process 8 bytes per a clock cycle,
therefore we have selected this variant for a brief comparison
(see Tab. II). Our architecture excludes the input and output
buffers and the output sequence encoding part. However, the
amount of FPGA logic resources are comparable (PWS=8 w/
HT variant has 16519 ALMs compared to 9656 ALMs) from
perspective of the used FPGAs. The overall latency of the [8]
is 41 clock cycles. The parts of the architecture [8] which are
implemented also in our approach include: a hash calculation,
a hash table update, a string match and a match selection. The
latency of these selected parts was originally 29 clock cycles,
whereas our approach has the latency of 7 clock cycles only,
thus the latency has been decreased approximately four times.

TABLE II
BRIEF MSU PERFORMANCE COMPARISON

Solution ALMs Latency [Cycles] Throughput [Gbps]
Our LZ4 MSU 9656 7 16,0

PWS=8 w/HT [8] 16519 29 (41) 11,2

LZ4 ASIC [13] N/A 17 4,0

LZ4 8-Bit [7] 690 N/A 2,0

1) Compression Ratio Analysis and Simulation: However,
it is difficult to compare compression ratios of this approach
against other implementations because our MSU architecture
is only part of compression architecture. This is the reason,
why we developed a functionally equivalent software model of
our hardware architecture. This software model was connected
to an existing software LZ4 architecture re-using other parts
of LZ4 (input buffer, output buffer and the LZ4 encoding
algorithm). We assume the compression ratio of the software
model has to be equal to the presented hardware architecture,
because the process of output encoding cannot affect the
compression ratio (see Fig. 6).

We processed three compression corpuses (Calgary [24],
Canterbury [25], Silesia [26]) through our (hardware based)
software model of LZ4 to obtain experimental results. The
compression ratio is scaling up in an expected way in relation
to the size of the hash table (see Tab. III).

TABLE III
COMPRESSION RATIOS FOR DIFFERENT HT SIZES

HT Size Calgary Canterbury Silesia
64 1,28 1,40 1,24

128 1,34 1,46 1,28

*256 1,38 1,5 1,31

512 1,39 1,57 1,32

1024 1,47 1,68 1,4

2048 1,54 1,75 1,48

4096 1,61 1,81 1,56

*The size of 256 entries is used for the presented MSU architecture.

HW MSU
Functionally Equal Model

Input Buffer

SW MSU

Output
Encoding

Output
Encoding

Equal Data (Compression Corpuses)

Same Software Based
Output Encoding Function

Statistics

Output
Buffer

Output
Buffer

Should be Equal as Well

Fig. 6. Experimental simulation flow for obtaing compression ratios.

Our compression ratio is lower than LZ4 8-bit [7] and
Software LZ4 due to their usage of advanced collision han-
dling. We assume that the LZ4 8-bit architecture uses 24-bit
wide address of the input buffer, thus 32 or 64 BRAMs are
used for implementation of the dictionary (the most feasible
configurations). All remaining BRAMs realize the input and
the output buffer. The worst case of 32 BRAMs is representing
the dictionary size of 65536 entries [18] compared to our 256
entries.

Both designs are using rehashing principle, which enables
them to achieve higher compress ratio, however they cannot
guarantee their worst case throughput. LZ4 8-bit [7] is only
providing peak performance throughput, which is derived from
processing 8 bytes per clock. We are presenting MSU with
worst case performance, which is an essential characteristics
of stable high-throughput design.

TABLE IV
BRIEF COMPRESSION RATIO COMPARISON

Solution Calgary Canterbury Silesia
Our LZ4 MSU 1,38 1,5 1,31

PWS=8 w/HT [8] 1,82 N/A N/A

LZ4 ASIC [13] N/A N/A N/A

LZ4 8-Bit [7] Incomplete (1,65 – 2,05)

Ref SW LZ4 2,26 2,11 2,41

2) Influence of the Latency: An MSU (and overall system)
latency affects the system readiness to accept new data. Lower
latency also allows us to ”squeeze” more data into constant
throughput media by lowering an inter-frame gap, in a packet
oriented real-time systems (with packets processed one by one,
not in a continuously streamed manner), in case that more
parallel blocks are used at the same time.

All MSU architectures designed for high throughput ap-
plications use pipelining principle where data are processed
alongside control signal or other data (for example hash
calculations or matching) in several stages. The latency reduc-
tion might enable the number of pipeline stages to decrease
resulting in lower usage of logic resources.

V. FUTURE WORK

We are considering to design new optimizations for the
presented architecture. The first idea is to design an optimized
hash calculation unit which by itself is currently capable of
running at approximately 700 MHz [20] with the latency of
6 clock cycles, whereas the current design can run up to
250 MHz (and cannot be further significantly increased). The
architecture of a DSP48 block allows to bypass some pipelin-
ing stages to limit the latency thus limiting the frequency. We
can reduce the latency to just 3 clock cycles while matching
the frequency of DSP48 blocks to the rest of the MSU design.
Therefore we can save additional resources in Data and Data
Address pipelines (see Fig. 5). The reduction in this particular
case will be 50% of flip-flops required for these pipelines.

We can also apply similar principle to an embedded memory
block (also capable of running at approx. 600 MHz [20]) to
implement the multipumping principle [14] in order to save
resources (BRAMs) required for the LVT based hash table.
However the multipumping principle will increase the amount
of other used FPGA resources. Further optimizations of the
LVT principle will be also explored [21].

We started implementating a system realizing the LZ4
lossless compression algorithm with use of the presented MSU
architecture with the aim of minimum 10 Gbps throughput.

VI. CONCLUSION

We presented an architecture of a Match Search Unit
(MSU) inspired by a modern fast LZ4 lossless compression
algorithm suitable for hardware implementations. We proposed
optimizations of the original LZ4 flow for reducing the mem-
ory read/write accesses towards the implementation platform
(Xilinx Virtex-7 FPGA logic).

The latency of the presented MSU solution has been reduced
4 times compared to the previous work [8], while the amount
of FPGA logic resources is comparable.In contrast to [7]
our MSU architecture guarantees minimal throughput, has
substantially higher throughput rate with comparable amount
of FPGA resources and achieves slightly lower compression
ratio with use of significantly smaller dictionary size (just 256
entries respectively 65536).

The design has the potential for further optimizations in
order to significantly reduce the overall latency and resource
consumption. For the current implementation the theoretical
throughput is 16 Gbps.

ACKNOWLEDGMENT

Omitted due to blind review.
Omitted due to blind review.
Omitted due to blind review.

Omitted due to blind review.
Omitted due to blind review.
Omitted due to blind review.

REFERENCES

[1] Cisco Visual Networking Index: Forecast and Methodology, 2008–2013,
[Online] https://tinyurl.com/yb6wf4k3

[2] J. Ziv and A. Lempel, ”A universal algorithm for sequential data com-
pression,” in IEEE Transactions on Information Theory, vol. 23, no. 3,
pp. 337-343, May 1977. doi: 10.1109/TIT.1977.1055714

[3] D. A. Huffman, ”A Method for the Construction of Minimum-
Redundancy Codes,” in Proceedings of the IRE, vol. 40, no. 9, pp. 1098-
1101, Sept. 1952. doi: 10.1109/JRPROC.1952.273898

[4] D. Harnik, E. Khaitzin, D. Sotnikov and S. Taharlev, ”A Fast Implemen-
tation of Deflate,” 2014 Data Compression Conference, Snowbird, UT,
2014, pp. 223-232. doi: 10.1109/DCC.2014.66

[5] J. Kane and Q. Yang, ”Compression Speed Enhancements to LZO
for Multi-core Systems,” 2012 IEEE 24th International Symposium on
Computer Architecture and High Performance Computing, New York,
NY, 2012, pp. 108-115. doi: 10.1109/SBAC-PAD.2012.29

[6] M. Bartı́k, S. Ubik and P. Kubalı́k, ”LZ4 compression algorithm
on FPGA,” 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), Cairo, 2015, pp. 179-182. doi:
10.1109/ICECS.2015.7440278

[7] W. Liu, F. Mei, C. Wang, M. O’Neill and E. E. Swartzlander, ”Data
Compression Device Based on Modified LZ4 Algorithm,” in IEEE
Transactions on Consumer Electronics, vol. 64, no. 1, pp. 110-117, Feb.
2018. doi: 10.1109/TCE.2018.2810480

[8] J. Fowers, J. Y. Kim, D. Burger and S. Hauck, ”A Scalable High-
Bandwidth Architecture for Lossless Compression on FPGAs,” 2015
IEEE 23rd Annual International Symposium on Field-Programmable
Custom Computing Machines, Vancouver, BC, 2015, pp. 52-59. doi:
10.1109/FCCM.2015.46

[9] B. Sukhwani, B. Abali, B. Brezzo and S. Asaad, ”High-Throughput, Loss-
less Data Compresion on FPGAs,” 2011 IEEE 19th Annual International
Symposium on Field-Programmable Custom Computing Machines, Salt
Lake City, UT, 2011, pp. 113-116. doi: 10.1109/FCCM.2011.56

[10] R. Mehboob, S. A. Khan, Z. Ahmed, H. Jamal and M. Shahbaz,
”Multigig lossless data compression device,” in IEEE Transactions on
Consumer Electronics, vol. 56, no. 3, pp. 1927-1932, Aug. 2010. doi:
10.1109/TCE.2010.5606348

[11] K. Papadopoulos and I. Papaefstathiou, ”Titan-R: A Reconfigurable
Hardware Implementation of a High-Speed Compressor,” 2008 16th In-
ternational Symposium on Field-Programmable Custom Computing Ma-
chines, Palo Alto, CA, 2008, pp. 216-225. doi: 10.1109/FCCM.2008.14

[12] E. D. Knuth, ”The Art of Computer Programming, Volume 3: (2nd Ed.)
Sorting and Searching”, 1998, ISBN 0-201-89685-0. Addison Wesley
Longman Publishing Co., Inc.

[13] Sang Muk Lee, Ji Hoon Jang, Jung Hwan Oh, Ji Kwang Kim,
Seung Eun Lee, Design of hardware accelerator for Lempel-Ziv 4
(LZ4) compression, IEICE Electronics Express, ISSN 1349-2543 , doi:
10.1587/elex.14.20170399

[14] C. LaForest, S. Gregory, ”Efficient Multi-ported Memories for FPGAs”,
Proceedings of the 18th Annual ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, Monterey, CA, 2011, pp. 41-50.
doi: 10.1145/1723112.1723122

[15] Z. Bradac, S. Valach, 10G bit ethernet phy implementation in FPGA
based systems, In IFAC Proceedings Volumes, Volume 39, Issue 21, 2006,
pp. 427-432, ISSN 1474-6670. doi: 10.1016/S1474-6670(17)30224-0.

[16] 7 Series DSP48E1 Slice User Guide (UG479), Xilinx [Online]. Avail-
able: https://tinyurl.com/ybhx4r93

[17] 7 Series FPGAs Configurable Logic Block User Guide (UG474), Xilinx
[Online]. Available: https://tinyurl.com/xug474

[18] 7 Series FPGAs Memory Resources (UG473), Xilinx [Online]. Avail-
able: https://tinyurl.com/y75gctmw

[19] Stratix V Device Handbook (SV-5V1 2017.12.15), Altera [Online].
Available: https://tinyurl.com/stx5-alm

[20] Virtex-7 T and XT FPGAs Data Sheet – DC and AC Switching Charac-
teristics (DS183), Xilinx [Online]. Available: https://tinyurl.com/v7-ds183

[21] M. Bartı́k, S. Ubik and P. Kubalı́k, ”A novel and efficient method to
initialize FPGA embedded memory content in asymptotically constant
time,” 2016 International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun, 2016, pp. 1-6. doi: 10.1109/ReCon-
Fig.2016.7857146

[22] Charles Eric Laforest, Zimo Li, Tristan O’Rourke, Ming G. Liu, and
J. Gregory Steffan. Composing multi-ported memories on fpgas. ACM
Trans. Reconfigurable Technol. Syst., 7(3):16:1–16:23, September 2014.

[23] Ameer M.S. Abdelhadi and Guy G.F. Lemieux. Modular multi-ported
sram-based memories. In Proceedings of the 2014 ACM/SIGDA Inter-
national Symposium on Field-programmable Gate Arrays , FPGA ’14,
pages 35–44, New York, NY, USA, 2014. ACM.

[24] Bell, T.C., Witten, I.H. and Cleary, J.G. ”Modeling for text compres-
sion,” Computing Surveys 21(4): 557-591; December 1989; ISSN: 0360-
0300. doi: 10.1145/76894.76896

[25] R. Arnold and T. Bell, ”A corpus for the evaluation of lossless compres-
sion algorithms,” Proceedings DCC ’97. Data Compression Conference,
Snowbird, UT, USA, 1997, pp. 201-210. doi: 10.1109/DCC.1997.582019

[26] Deorowicz, S., Universal lossless data compression algorithms, Silesian
University of Technology, 2003;

